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Introduction 

In order to optimize the extraction scheme used to take antiprotons out of 
the accumula,tor, it is necessary to understand the basic processes involved. 
At present, six antiproton bunches per Tevatron store are removed sequen- 
tially by RF unstacking from the accumulator. The phase space dynamics 
of this process, with its accompanying phase displacement deceleration and 
phase space dilution of portions of the stack, can be modelled by numeri- 
cal solution of the longitudinal equations of motion for a large number of 
particles. We have employed the tracking code ESME’ for this purpose. In 
between RF extractions, however, the stochastic cooling system is turned on 
for a short time, and we must take into account the effect of momentum 
stochastic cooling on the antiproton energy spectrum. This process is de- 
scribed by the Fokker-Planck equation, which models the evolution of the 
antiproton stack energy distribution by accounting for the cooling through 
an applied coherent drag force and the competing heating of the stack due to 
diffusion, which can arise from intra-beam scattering, amplifier noise and co- 
herent (Schottky) effects. In this note we examine the aspects of the Fokker- 
Planck in the regime where the nonlinear terms due to Schottky effects are 
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small. This discussion ultimately leads to solution of the equation in terms 
of an orthonormal set of functions which are closely related to the quantum 
simple-harmonic oscillator wave-functions. 

The Fokker-Planck Equation 

The Fokker-Planck equation describing stochastic cooling of the antipro- 
ton beam energy distribution g(E) is typically written as’ 

all(E) 
-z 

at 

-&[F(E)$(E) - D(E)w]. 

The drag force coefficient F(E) and the diffusion coefficient D(E) are in 
general not simple functions. In fact, D(E) contains a component due to 
the stack Schottky noise signal which is proportional to $(E), making the 
equation nonlinear. These complications have led to numerical integration as 
the favored method of solution of the Fokker-Planck equation in this context. 
Inside the core of the stack, however, the diffusion is not necessarily Schottky 
dominated - the heating due to intra-beam scattering, which is nearly a 
constant component of D(E) over the relevant energy spectrum, can be larger 
than the component due to Schottky noise. If we assume the approximation 
that D = Do is constant, then linear analysis of the core energy spectrum 
becomes straightforward. Since the RF unstacking process greatly disturbs 
the core spectrum itself, this analysis is particularly relevant to our extraction 
optimization problem. 

Inside the core, the drag force coefficient can be approximated well by 
F(E) = -a(E ~ E,,), where Ea is the energy of core peak, corresponding to 
the cenral frequency of the cooling amplifier notch filter. We now write our 
Fokker-Planck equation for the core energy distribution as 

W,(E) _ 
at ~ &[a(E - E,)@(E) t Dow]. 

We now examine possible analytical approaches to solution of this equa- 
tion, starting first with a discussion of the evolution of the moments of the 
energy distibution. This analysis will serve to illuminate the physical pro- 
cesses implied in the solutions to the Fokker-Planck equation itself, which we 
present in a later section. 
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Moments of the Fokker-Planck Equation 

As our equation describes a distribution of particles in energy, an obvious 
starting point is to examine the moments of the distribution. The n-th 
moment of the distribution is defined as 

Qn= $~~EV(E)d~,~=0,1,2 ,... (3) 

where N is the total number of particles in the stack. The first moment ‘PI 
is merely the average energy of the stack particles E, while the second is 
related to the rms energy spread of the distribution by 

CE - ; J-m (E ~ E)‘$(E)dE = C’(2 - Q; 2- 
m 

The equations of motion for the moments of the distribution are simply 
written as 

@@n - = Ior E&E ~ Eo)$(E) + DoaE 
at -cc 

a*(E)]dE. (5) 

The right hand side of the equation can be integrated by parts to yield 

- = na[EoQ,-l ~ qn] + n(n ~ 1)DOq’n-2. 
at 

(6) 

This expression can easily be generalized to include higher polynomial in E 
dependence for F and D. As a simple example of the use of these expressions, 
we take the cue I? = E,, and write the equation for the time evolution of 
the rms energy spread as 

au; 
- = -2~4 + 2D0. at 

The solution to this equation is 

2 bE = ufq t (ut ~ +)exp (-2at), (8) 

where u$ = DO/q and ui = u;(O). The cooling time for the energy spread 

is T= = (2a)-‘, as could be expected. In the accumulator T= is on the order 
of twenty to thirty minutes3 
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We now discuss some additional aspects of the evolution of the moments. 
To simplify the moment equations we can set the constant Eo = 0 for the 
remainder of our discussion. This allows a hierarchy of equations in which 
only the moments of the same parity affect each other. Thus the equations 
can be solved by climbing the even and odd ladders of the moment hierarchy 
separately. It should be noted in this regard that for symmetric distributions, 
the odd moments vanish, 

‘P’, = 0, n odd. 

Also, for a Gaussian distribution of rms width go, written 

(9) 

(10) 

we have the moments 

Qn = ug(n ~ l)!!, n even. (11) 

From this equation, we have the relation ‘JJ,,/‘~=-~ = &(n- l), and the ratio 
of the moments increases linearly with n. If we assume the Gaussian is in 
equilibrium, then uk = u:~ = Do/a. 

Now, having established the equilibrium values of the moments, we take as 
an example perturbation of the distribution the case where a narrow band of 
m < N particles with energy width o. < (TE is removed from the neighbor- 
hood of the energy E,. The change in the moments due to this perturbation 
is approximately 

A’P, z -mE;. (12) 

If we subtract out the equilibrium values of the moments, the equations of 
motion for the moment perturbations are simply 

aA*” 
~ = -naA’P,, + n(n ~ l)D,,AW,-2, 

at 

For the first two moments, the solution to this equation is merely a simple 
exponential, 

A’P” = A’Pn(0)exp(-nat), R. = 1,2. (14) 
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All higher moments can be solved for straightforwardly by climbing the 
ladder of moment equation hierarchy. Note that the ratio of drag (cooling) 
to diffusion (heating) terms in the hierarchy of equations is 

?lCIAT!, l (“)“. 
n(n - l)D,,A’I’,-2 = (n ~ 1) creq (15) 

Thus if E. < geqr then all moment evolution for n > 2 is diffusion dominated. 
A drastic, local dip in the core distribution is remedied first by the diffusion 
of particles from the nearby energies, not by coherent, drag force effects. If 
on the other hand E. > gep, then the perturbation is away from the bulk 
of the distribution, diffusion is small and a large coherent drag force can be 
dominant for small R. 

The moment approach to the dynamics of the energy spectrum has given 
us some insight into the mechanisms of core cooling as the evolution of each 
moment can be calculated explicitly. The moments of the distribution are 
not a complete, orthogonal set, however, and thus cannot be inverted to give 
the distribution at a later time. With this in mind, we now turn to the 
solution of the linear Fokker-Planck equation in terms of such an orthogonal 
set. 

Solution of the Fokker-Planck Equation 

The fact that the moments of the Fokker-Planck equation in its assumed 
form have such simple evolution equations containing only the next lower 
moment of the same parity, as well the existence of a Gaussian equilibrium 
solution, strongly suggests that the solutions to this equation are related to 
the Hermite polynomials. It is straightforward to show that this is the case. 

If we assume that the solution to the Fokker-Planck equation is separable 
in energy and time, 

$(E,t) = *(W(t), (16) 

then the two resultant equations are 

where T = at is the normalized time, X is the separation constant, and 

W’ + 2zw t 2( 1 - xp = 0 (18) 
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where t2 = (a/2Do)(E - Eo)' = (E - Eo)'/2u& and ’ denotes a derivative 
with respect to I, the normalized energy. The formal solution for the time 
dependent part is of course 

T(r) = exp(XT). (19) 

From this we can see that for some solution we must have X = 0, correspond- 
ing to the stationary core profile. All other solutions are expected to give 
dying exponential behavior, i.e. X < 0. 

In order to solve the energy equation we write it in terms of a new function 
0(z) = +(z)exp(z’/2), and find upon substitution 

cl” + (1 - 2x - +I = 0. (20) 

If we tentatively allow the separation constant to take on the only values 
X, = --n, this equation is identical to that of the Schrodinger equation for 
the simple harmonic oscillator. It turns out that these are in fact the only 
allowable solutions, and that this is due to a normalization condition which 
is similar, but not completely analogous, to the quantum oscillator case. The 
solutions of our transformed equation are 

n,(z) = exp (-~2/2)&(z), (21) 

where the H, are the Hermite polynomials. The Cl, form a complete, or- 
thogonal set of solutions to the transformed equation, and the equivalent 
solutions to our original energy equation are 

a,,(z) = exp(-2”/2)Q,(z) = exp(-z’)H,(z). (22) 

The remaining issue at hand is the normalization of these solutions, ex- 
amination of which validates the choice of eigenvalues we have made above. 
We have the particle conservation condition 

l: +(E, t)dE = f--I-, %,(5)d2 exp(-n7) = N 
(23) 

In order for this condition to be satisfied at all times 7 > 0; we must have 

J m @o(+)d+ = N -cc (24) 
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which gives us a normalization constant for OO. Note that this solution is 

merely the equilibrium core profile,* a Gaussian of width (T,~ = G, 

@,,(z)dz = 5 exp (-z’)d+ = 6Tce, exp (-(E - E#/2af,)dE, (25) 

as we would expect from our moment analysis. For all higher n the conser- 
vation condition yields, 

I 
= @,,(z)dz = 0, n 2 1. (26) -m 

That this condition holds for our solutions is easily shown. The Rodrigues 
representation of the Hermite polynomials5 gives us the convenient form 

H,,(z) = (-)“exp(z’)&exp(-r’). (27) 

Thus we have simply 

for all integer rz 2 1. This only holds for our choice of eigenvalues, thus 
justifying our identification of A, = -n. The normalization for the set of 
solutions is as follows: 

n,(z) * (2°K %!)-‘~Ti,(z). (29) 

The total solution for the evolution of the energy spectrum is thus 

$(E,t) = Fc,exp(-z’)H,,(z)exp(-n7) (30) 
n=O 

where projection of the initial (T = 0) energy distribution on this complete 
orthonormal set is given, with $(E,O) = @(z), by 

c, = 
J 

= @(z)exp(z*/2)0,(z)dz = (2”a”* 
-m 

n.) 11 Q(s)Hn(z)d= (31) ’ -I” 

That these projections should be linear combinations of the moments of the 
distribution (they might be termed the Hermite moments) is certainly not 
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surprising in light of our previous results. The cooling rate for the second 
Hermite component is 20, in agreement with our earlier direct calculation 
of the cooling of the rms energy spread to its equilibrium value in Eq. 7. 
Note that for the general solutions the requirement that the distribution 
$(E, t) > 0 is satisfied for all time if it is satisfied initially. 

These solutions have been implemented as a subroutine in ESME, to 
quickly follow the evolution of the calculated stack energy spectrum in track- 
ing studies of RF unstacking from the accumulator. Comparisons with the 
numerical solution of the Fokker-Planck equation using the nonlinear terms 
in D(E) show no significant difference for the cases we have studied. These 
calculations will be presented in a later communication. We now discuss 
other possible uses for this formalism. 

Perturbation Theory 

The solution of the Fokker-Planck equation in terms of an orthonormal 
basis of functions allows, in analogy with quantum mechanics, the use of 
perturbation theory to solve for cases close t,o the one already solved. In 
particular, one can solve for the asymptotic solution, or static core. We begin 
by writing the eigenvalues as X, = -n + Xpl. As in quantum mechanics, we 
can write the first order perturbations in the eigenvalues as 

XV) = J = Ci,(z)K(‘)fl,(z)dz, 
-m 

where the perturbed ‘Hamiltonian’ operator is given in t,erms of additional 
energy dependence5 of the diffusion and drag force coefficients. Writing ex- 
plicitly D(E) = D,(l + d(E)) and F(E) = -a(1 + f(E))(E - E,), with 
Id(E If(E)! << 1, we have the operator 

K(l) = ;[d(z)& + f(z); 

For the case n = 0, which corresponds the static solution (the “ground 
state” of the cooling system), we must have X0 = 0 to insure the time in- 
dependence of the solution. The perturbation treatment does not in gen- 
eral satisfy this requirement for arbitrary K (*I, which is a limitation of this 

8 



method. Fortunately, the changes in eigenvalues are not of interest at this 
point. However, the changes in the orthonormal basis functions are, and they 
are given in first order by 

ft) = F nm(zE) j- R,(+)K(‘)R,(z)dz, 
m=O (m - n) --co 

m # n. (34) 

For the static core solution this expression is 

R,(s)K(‘)?r-“4exp(-~Z/2)d~. (35) 

It would be most beneficial to be able to introduce nonlinear terms into 
the perturbed ‘Hamiltonian’, in order to model the effects of the Schottky 
noise derived diffusion term. This is not a familiar use of the perturbation 
scheme, and is not in general valid, but it can be used to calculate the new 
equilibrium state if the nonlinear effects are small. This is accomplished by 
substitution of the linear static core solution for $ in the above equation. 
This process can be iterated - although it is not guaranteed to converge 
quickly. As an example, the first order change in the static core solution due 
to a diffusion term proportional to $, d(r) = d,+(z) < 1, can be written as 

nb’) = 5 fl,($& Jrn n,(s)~exp(~2’)~exp(-~)dS (36) 
rn=l cc 

which can be written, after integration by parts, as 

nb” = ~~n,(~)~~~~~xp(-Jl’/Z)~n,(s)d~. (37) 

It can easily be seen from parity arguments that no odd m solutions will 
contribute to the new core profile. This must be so because an odd m solution 
is asymmetric, and cannot be generated by diffusion alone. Evaluating the 
first nonzero component of the perturbed solution, we have for the start of 
the series solution for the new core: 

@C,(Z) = 5 exp (-z*)[Ho(s) t &Nd,H,(z) $- (38) 

= geexp(-z*)[l+ c&Nd,(4x2 - 2) + . . (39) 
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This form shows the flattening and expansion of the core due to the Schottky 
nonlinear diffusion term, as well as the amplitude (N) dependence, explicitly. 
The added core width due to the first perturbation term is 

ACTi 7 
~ = -Nd,. 
4 166 

(40) 

The added width is a term proportional to the stack size, added in squares 
with the calculated linear width. 

It is instructive to compare these results to the exact static solution of 
the Fokker-Planck equation assuming the Schottky noise dominates all other 
sources of diffusion. If we include only a Schottky term in the diffusion coef- 
ficient, D(E) = D1$(E), then the solution of the time-independent Fokker- 
Planck equation is simply 

NE) = P[l~ 2pD ?I; IEI < &G> (411 

where p = [(~N/~)*(cK/~D,)]“~, and the boundary of the now parabolic dis- 
tribution is therefore at lE,I = (3ND1/2a)‘i3. Note that t,his solution im- 
plies that adding more anti-protons to the stack in the Schottky-dominated 
regime increases the maximum spectral density as N2i3, instead of the lin- 
ear N dependence obtained in the constant diffusion coefficient case. The 
squared width of this parabolic distribution is 

(42) 

The fact that the squared width does not rise linearly with N, as our per- 
turbation calculation gives, emphasizes the difference between the Schottky- 
dominated and the nearly constant diffusion coefficient case. 

Discussion 

This formalism developed in this note has proven to be of use in it specific 
problem, namely that of quickly determining the evolution of the stack en- 
ergy distribution under the influence of stochastic cooling after it has been 
disturbed by the unstacking process. We have discussed the possible uses 
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of perturbation analysis, and pointed out the difficulties arising from inclu- 
sion of the nonlinear Schottky diffusion term in the analysis. We have not 
examined the possible use of the perturbation approach in analyze coherent 
instabilities in the stack. In this regard, it should be noted that inclusion 
of imaginary parts in the drag force and diffusion coefficients can give wave- 
like solutions for the energy distribution which could be unstable. Further 
consideration of this subject is beyond the scope of the present work. 

The author is pleased to acknowledge useful discussions with S. R. Mane, 
G. Jackson, V. Visnjic and J. Marriner. 
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